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Summary
PyMedPhys is an open-source medical physics library built for Python by a diverse community
that values and prioritizes code sharing, review, continuous improvement, and peer development.
PyMedPhys aims to simplify and enhance both research and clinical work related to medical
physics. It is inspired by the Astropy Project (Astropy Collaboration, 2013); a highly successful
collaborative work of our physics peers in astronomy.

Statement of need
Medical radiation applications are subject to fast-paced technological advancements. This is
particularly true in the field of radiation oncology, where the implementation of increasingly
sophisticated technologies requires increasingly complex processes to maintain the improving
standard of care. To help address this challenge, software tools that improve the quality, safety
and efficiency of clinical tasks are increasingly being developed in-house (Arumugam et al.,
2016; Bakhtiari et al., 2011; Bhagroo et al., 2019; Chan et al., 2015; Edvardsson et al., 2018;
Huang et al., 2021; Inaniwa & Kanematsu, 2018; Keall et al., 2014; Kimura et al., 2021; Kuo
et al., 2020; Latala et al., 2020; Li et al., 2010; Maughan et al., 2019; Skouboe et al., 2019).
Commercial options are often prohibitively expensive or insufficiently tailored to an individual
clinic’s needs. On the other hand, in-house development efforts are often limited to a single
institution. Similar tools that could otherwise be shared are instead “reinvented” in clinics
worldwide on a routine basis. Moreover, individual institutions typically lack the personnel and
resources to incorporate simple aspects of good development practice or to properly maintain
in-house software.

By creating and promoting an open-source repository, PyMedPhys aims to improve the quality
and accessibility of existing software solutions to problems faced across a range of medical
radiation applications, especially those traditionally within the remit of medical physicists. These
solutions can be broadly categorised in two areas: data extraction/conversion of proprietary
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formats from a variety of radiotherapy systems, and manipulation of standard radiotherapy data
to perform quality assurance (QA) tasks that are otherwise time-consuming or lack commercial
solutions with the desired flexibility or true function.

Data extraction and conversion currently includes: two treatment planning systems, an oncology
information system, and a linear accelerator vendor family of systems. Data in proprietary
formats from these systems are extracted and converted to allow for integration in a myriad of
applications. Applications that use planning system information include: electron cut-out factor
determination, CT extension, and extraction of dose information for patient QA purposes.
Applications that use the oncology information systems include: clinical dashboards that
summarise data, quality task tracking, and comparison of dose information to planning systems.
Applications that use the linear accelerator data include: patient specific QA analysis against
planning data, and analysis of machine performance such as the Winston-Lutz test.

QA tasks using standard radiotherapy data include: anonymisation, extraction of dose data
for analysis, manipulation of contour files to allow merging or adjustments/scaling of relative
electron density, modifying machine names in plans, and most frequently used, the calculation
of a Gamma index, a widely recognised metric in radiotherapy analysis that quantifies the
difference between measured and calculated dose distributions on a point-by-point basis in
terms of both dose and distance to agreement (DTA) differences.

Many of these tools are in use clinically at affiliated sites, and additionally, aspects of PyMedPhys
are implemented around the world for some applications. Many parties have embraced the
gamma analysis module (Castle et al., 2022; Cronholm et al., 2020; Gajewski et al., 2021;
Galić et al., 2020; Lysakovski et al., 2021; Milan et al., 2019; Pastor-Serrano & Perkó, 2021;
Rodrı́guez et al., 2020; Spezialetti et al., 2021; Tsuneda et al., 2021; Yang et al., 2022), while
implementations of the electron cutout factor module and others (Baltz & Kirsner, 2021;
Douglass & Keal, 2021; Rembish, 2021) have also been reported. Additionally, the work
has been recognized by the European Society for Radiotherapy and Oncology (ESTRO) and
referenced as recommended literature in their 3rd Edition of Core Curriculum for Medical
Physics Experts in Radiotherapy (Bert et al., 2021).
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